
September 3, 2015 Solution
Analysis I - MIDTERM Exam - Semester I

1. Prove that the Principle of Mathematical Induction, the Principle of Strong Induction and the well
ordering property of N are all equivalent.

Solution: The following are equivalent:
1)Principle of Mathematical Induction
2)Principle of Strong Induction
3)Well Ordering property of N

Proof:
(2) =⇒ (3): Let S be a non-empty subset of N. Suppose S has no minimal element.
n = 1 does not belong to S as it will be the minimal element. For the same reason
n = 2 does not belong to S as n = 1 /∈ S.Suppose {1, . . . , n} /∈ S, then n+ 1 /∈ S as then it
will be the minimal element. So, by Principle of Strong Induction S should be empty
, which is a contradiction.
(3) =⇒ (1):Let P (n) be a mathematical statement for n ∈ N.Suppose P (1) is true and
P (n+ 1) is true whenever P (n) is true. If P (k) is not true for all integers,then S be the
non-empty set of k for which P (k) is not true. By Well Ordering property it should
have a minimal element which cannot be k = 1. Hence P (k − 1) is true which implies
that P (k) is true,which is a contradiction.
(2) =⇒ (1): it is trivial.
(1) =⇒ (2): Let us assume that for the statement P (n) the hypothesis of Strong
induction are met and let Q(k) be the statement that ’P (n) is true for all n ≤ k’
We need to show that Q(n) is true for all n ∈ N using the conditions of Regular
Induction.
Now let us check the conditions for Regular Induction:
Since P (1) is true Q(1) is true.
Since we have assumed the conditions of Strong Induction ’P (n) is true for all n ≤ k’
implies P (k + 1) is true, i.e. Q(k) is true implies P (k + 1) is true.
But,Q(k) is true and P (k + 1) is true together implies Q(k + 1) is true.Hence, we get
that Q(k) is true implies Q(k + 1).
Thus, by Regular Induction we get that Q(n) is true for all n ∈ N, which in turn says
that P (n) is true for all n ∈ N. �

2. Prove that if An is a countable set for each n ∈ N, then their union
⋃∞

n=1An is countable. Prove
that if B1 . . . Br are a finite number of countable sets then their product Πr

n=1Bn is countable.

Solution:Let us first prove that if B1 . . . Br are a finite number of countable sets then
their product Πr

n=1Bn is countable.
It’s sufficient to prove for the case for r = 2, as for the general case can be done by
induciton.

We will try to set a bijection from N× N→ N
Let f : N× N→ N be defined by:

f(m,n) = 2m3n
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if f(m,n) = f(l, k), by fundamental theorem of arithmetics we get that m = l, n = k
We can also define an injection g : N→ N× N say by g(n) = (0, n)
Hence, using the Cantor-Berstein theorem we can say that there exists a bijection
h : N× N→ N
Thus we get that if B1andB2 are countable then B1 × B2 is injectively mapped into
a subset of N × N and since the later is countable , any subset of it is also so, hence
B1 ×B2 is also countable.

For the union case:
Since An is countable for each n ∈ N we can write An = {a1,n, a2,n, a3,n . . .}.
Let A =

⋃∞
n=1An

Case 1: Suppose An is a collection of disjoint sets. Let x ∈ A, then x ∈ Ak for some k
and hence x = (m,n) for some m,n ∈ N.The pair (m,n) is uniquely determined as the
sets are disjoint.
Let the function f : A→ N×N be defined by f(x) = (m,n) Then f is an injection into a
subset of N× N and hence countable.

and since we have the following lemma:

Lemma 0.1 If F = {A1, . . . , An, . . . , } is a collection of countable sets. Let G = {B1, . . . , Bn, . . . , }
be such that B1 = A1 and Bn = An −

⋃n−1
k=1 An for n > 1.Then

⋃∞
n=1Bn =

⋃∞
n=1An

we get that
⋃∞

n=1An is countable.

�

3. State the completeness property of R. Using, the completeness property of R, prove that there exists
a positive real number x such that x2 = 5. Prove that the ordered field Q of rational numbers does
not satisfy the completeness property.

Solution:Statement: Every non-empty set S of real numbers which is bounded above
has a supremum; that is there is a real number b such that sup S = b.

If we consider the set S= {x ∈ R : x2 ≤ 5}, it should have a supremum as it is a bounded
set, i.e. there exists a positive real number x such that x2 = 5.

Q does not satisfy the Completeness property because the subset {r ∈ Q : r2 < 5} is
bounded but do not have a supremum in Q. �

4. Prove that a cauchy sequence of real numbers converges.

Solution:Let {xn} be the given cauchy sequence of real numbers, which means given
ε > 0 ∃ k ∈ N such that:

| xn − xm |< ε/2, ∀n,m ≥ k

which implies:
| xn − xk |<| xn − xk+1 | + | xk+1 − xk |< ε, ∀n ≥ k

let us choose ε = 1 for our convenience.
thus, we get that xn < 1 + xk ∀n ≥ k
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if we set M = max{x1, . . . , xn−1, 1 + xk}, then we get that {xn} is bounded by M .

By Boltzano-Weirstrass theorem we get that every bounded infinite set has a limit
point.
So, {xn} has a limit point , i.e. {xn} is a convergent sequence. �

5. Compute limn→∞n
1
n

Solution: Using, A.M. ≥ G.M. we get

1 + 1 + . . .+
√
n+
√
n

n
≥ n 1

n > 1

which implies

1− 2

n
+

2√
n
≥ n 1

n > 1

which shows limn→∞n
1
n = 1 �

6. Let X = {xn} be a sequence of real numbers which converges.Let limxn = x, where x ∈ R. Let
Y = {yn} be another sequence of real numbers.
Prove that limsupn→∞(xn + yn) = x+ limsup(yn).

Solution: let us assume x = 0, and l = limsup(yn), then given ε > 0 we get a N ∈ N such
that

yn < l +
ε

2
, ∀n > N

and, given m > 0 there esists an integer n > m such that

yn > l − ε

2
,

since limxn = 0, given ε > 0 we get a k ∈ N such that

| xn |<
ε

2
∀n ≥ k

if we set h = max{N, k}, we get that

xn + yn < l + ε, ∀n > h

and given m > 0 there exists a n > h > m such that

xn + yn > l − ε,

hence, we get that limsup(xn + yn) = limsup(yn)
Thus, if limxn = x then lim(xn − x) = 0 and hence limsup(xn − x+ yn) = limsup(yn) which
implies that limsupn→∞(xn + yn) = x+ limsup(yn). �

7. Show that the sequence of real numbers xn =
∑n

i=1(−1)i+1/i converges

Solution:if m > n ≥ N , we find that

| xm − xn |=|
1

n+ 1
− 1

n+ 2
+ . . .+

1

m
|< 1

n
≤ 1

N

By Archimedian property given ε > 0 ∃ k ∈ N such that 0 ≤ 1
N < ε ∀ N ≥ k.

Thus we get that {xn} is a cauchy sequence and hence convergent. �
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