September 3, 2015 Solution
Analysis 1 - MIDTERM Exam - Semester I

1. Prove that the Principle of Mathematical Induction, the Principle of Strong Induction and the well
ordering property of N are all equivalent.

Solution: The following are equivalent:
1)Principle of Mathematical Induction
2)Principle of Strong Induction
3)Well Ordering property of N

Proof:

(2) = (3): Let S be a non-empty subset of N. Suppose S has no minimal element.
n = 1 does not belong to S as it will be the minimal element. For the same reason
n = 2 does not belong to S asn=1¢ S.Suppose {1,...,n} ¢ S, then n+1 ¢ S as then it
will be the minimal element. So, by Principle of Strong Induction S should be empty
, which is a contradiction.

(3) = (1):Let P(n) be a mathematical statement for n € N.Suppose P(1) is true and
P(n+1) is true whenever P(n) is true. If P(k) is not true for all integers,then S be the
non-empty set of k for which P(k) is not true. By Well Ordering property it should
have a minimal element which cannot be k¥ = 1. Hence P(k — 1) is true which implies
that P(k) is true,which is a contradiction.

(2) = (1): it is trivial.

(1) = (2): Let us assume that for the statement P(n) the hypothesis of Strong
induction are met and let Q(k) be the statement that *P(n) is true for all n <k’

We need to show that Q(n) is true for all n € N using the conditions of Regular
Induction.

Now let us check the conditions for Regular Induction:

Since P(1) is true Q(1) is true.

Since we have assumed the conditions of Strong Induction ’P(n) is true for all n < &’
implies P(k + 1) is true, i.e. Q(k) is true implies P(k + 1) is true.

But,Q(k) is true and P(k + 1) is true together implies Q(k + 1) is true.Hence, we get
that Q(k) is true implies Q(k + 1).

Thus, by Regular Induction we get that Q(n) is true for all n € N, which in turn says
that P(n) is true for all n € N. O

2. Prove that if A, is a countable set for each n € N, then their union | J.-, A, is countable. Prove
that if By ... B, are a finite number of countable sets then their product 11}, _, By, is countable.

Solution:Let us first prove that if B; ... B, are a finite number of countable sets then
their product II]_; B,, is countable.

It’s sufficient to prove for the case for r = 2, as for the general case can be done by
induciton.

We will try to set a bijection from Nx N — N
Let f: N x N — N be defined by:

f(m,n) =2m3"



if f(m,n) = f(l,k), by fundamental theorem of arithmetics we get that m =1,n =%

We can also define an injection g : N — N x N say by g(n) = (0,n)

Hence, using the Cantor-Berstein theorem we can say that there exists a bijection
h:NxN-—=N

Thus we get that if BjandB; are countable then B; x B; is injectively mapped into
a subset of N x N and since the later is countable , any subset of it is also so, hence
B; x By is also countable.

For the union case:

Since A,, is countable for each n € N we can write A, = {a1,a2.n,035 ..}

Let A=, A,

Case 1: Suppose A, is a collection of disjoint sets. Let x € A, then z € A, for some k
and hence z = (m,n) for some m,n € N.The pair (m,n) is uniquely determined as the
sets are disjoint.

Let the function f: A — N x N be defined by f(z) = (m,n) Then f is an injection into a
subset of N x N and hence countable.

and since we have the following lemma:

Lemma 0.1 If F = {A4,...,An,...,} is a collection of countable sets. Let G = {Bi,...,By,...

be such that B, = A, and B, = A,, — Z;ll A, for n>1.Then |, B, =U,_, A,

we get that |J)~, 4, is countable.
(]

. State the completeness property of R. Using, the completeness property of R, prove that there exists
a positive real number x such that 2 = 5. Prove that the ordered field Q of rational numbers does
not satisfy the completeness property.

Solution:Statement: Every non-empty set S of real numbers which is bounded above
has a supremum; that is there is a real number b such that sup S = b.

If we consider the set S= {x € R : 22 < 5}, it should have a supremum as it is a bounded
set, i.e. there exists a positive real number z such that 22 = 5.

Q does not satisfy the Completeness property because the subset {r € Q : 72 < 5} is
bounded but do not have a supremum in Q. O

. Prove that a cauchy sequence of real numbers converges.

Solution:Let {z,} be the given cauchy sequence of real numbers, which means given
€ >0 3 k € N such that:
| 2p — T |[< €/2, Yn,m >k

which implies:

| Ty — xp |<| Ty — Tpr |+ | X1 — 2z |[< €, YR >k
let us choose ¢ = 1 for our convenience.
thus, we get that =, <1+z, Vn >k



if we set M = maz{x1,...,2n-1,1+ 21}, then we get that {z,} is bounded by M.

By Boltzano-Weirstrass theorem we get that every bounded infinite set has a limit
point.
So, {z,} has a limit point , i.e. {z,} is a convergent sequence. a

. Compute limn_monv%
Solution: Using, A.M. > G.M. we get

L1+ Vit o
- >

1

which implies

2 2 1

l—-——+—=2>n»>1

n  \/n
which shows lz’mn%oon% =1 O
. Let X = {z,} be a sequence of real numbers which converges.Let limz, = x, where x € R. Let
Y = {yn} be another sequence of real numbers.
Prove that limsupp—oo(Tn + yn) = © + limsup(yy).

Solution: let us assume x = 0, and | = limsup(y,), then given ¢ > 0 we get a N € N such
that c
Yn <1+ 3 Yn > N

and, given m > 0 there esists an integer n > m such that

€
n>l_7a
Y 2

since limz,, = 0, given € > 0 we get a k € N such that

|xn|<§ Yn >k

if we set h = maz{N, k}, we get that
Tp+yn <l+e VYn>h
and given m > 0 there exists a n > h > m such that
Tpn +Yn > 1 —¢,

hence, we get that limsup(x,, + yn) = limsup(y,)
Thus, if limz,, = z then lim(z, —z) = 0 and hence limsup(x, — z + y,) = limsup(y,) which
implies that limsup, oo (xn + yn) = = + limsup(y,,). O

. Show that the sequence of real numbers x, =Y, (—=1)""1 /i converges

Solution:if m > n > N, we find that

1 1
4

n 1 1
n+1 n+2 ~T—m

N
By Archimedian property given ¢ >0 3 k£ € N such that 0 < % <eV N2>k
Thus we get that {z,,} is a cauchy sequence and hence convergent. O
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